RELIABILITY, OUR CORE VALUE

TRESPA® TOPLAB®
SCIENTIFIC SURFACE SOLUTIONS
All our efforts are based on an important value: **reliability**. Reliable, in-house developed technology for durable materials that can handle tough laboratory life for a long time, even in high-demanding applications. A reliable supply chain and attentive customer service, as well as a reliable, dedicated and experienced sales team who understands the requirements of the laboratories of today and tomorrow, for customers anywhere in the world.”
Trespa® TopLab® products can be found in numerous laboratory and cleanroom projects in pharmaceutical, chemical and industrial companies, as well as in hospitals, research centres and universities all over the globe.

Thanks to more than 55 years of global experience, Trespa is recognised internationally as a premier developer of high-quality panels for scientific surface solutions. Trespa invests in quality and innovation, and keeps working hard to offer the customer a durable product.
Our history

1960
Manufacturing was started by a German company in Weert, The Netherlands. In 1963, the first panels under the name Trespa were sold.

1967
Launch of Trespa Volkern, a 12mm thick, fully homogenous and strong laminate ideal for desktops.

1978

1980

1984
Introduction of dry forming process, a new patented production technology for core materials based on wood fibres and phenolic resin.

1987
Electron Beam Curing Technology The development and patent of the Electron Beam Curing (EBC) technology allows Trespa to switch from a melamine surface to a high-quality coating system.

1994
Trespa Volkern G2, Trespa Sanitary, Trespa Furniture and Trespa Laboratory are replaced by Trespa® Meteon®, Trespa® Athlon® and Trespa® TopLab®.

1999
Launch of Trespa® TopLab® PLUS, high-performing surfaces for laboratory worktops.
2000
Launch of Trespa® Virtuon®.

2001
A 30-compartment press is put into production, the largest press in the world at that time.

2008-2012
Opening of Trespa Design Centre in Weert, Barcelona, Santiago, New York

2009
TopLab®PLUS and Trespa® Virtuon® are available with the Programme for the Endorsement of Forest Certification (PEFC™); since 2013 also the availability of the Forestry Stewardship Council™ (FSC™) certification was added.

2010
Creation of a dedicated Scientific Surface Solutions team.

2015
Next generation Electron Beam Technology (EB2)
Electron Beam Curing is an in-house developed, fast, non-thermal curing method which uses high-energy electrons at a controlled rate to cure special surfaces. The result is a closed surface with excellent smoothness, cleanability and chemical resistance.

2014
Dedicated TopLab® product range
Trespa® Athlon® and Trespa® Virtuon® are rebranded in TopLab®BASE and TopLab®VERTICAL.

2016
Extended 10 year warranty on TopLab® products.

Introduction of Grey Core for the TopLab® product range.

2018
18 New TopLab® colours.

2020
Launch of Trespa® Virtuon®.

TRESPA® TOPLAB® RELIABILITY, OUR CORE VALUE
In-house developed technology

Innovation has always been the cornerstone of our business strategy. Our in-house developed technology allowed us to be recognised as a leader in the field of high-quality panels for exterior and interior environments.
Testing and Certification
Today’s laboratory and functional environments demand compliance with rigorous codes and standards. Therefore, selecting the right material is of crucial importance. Trespa® TopLab® products for Scientific Surface Solutions are tested and certified according to international standards. TopLab®PLUS, TopLab®VERTICAL and TopLab®BASE are also certified under the GREENGUARD Gold certification program.

Branch associations
Trespa is a long-standing member of the branch associations Excellence4Lab, SEFA (Scientific Equipment and Furniture Association), VIP3000 (Association for Cleanrooms and Pharmaceutical Construction) and EGNATON (European Association of Sustainable Laboratory Technologies).

10-Year Warranty
The unique properties of Trespa® TopLab® panels make them highly durable. That is why Trespa offers a 10-year conditional warranty on all specifications in the material datasheet.
Trespa’s dedicated TopLab team

Every laboratory or cleanroom environment has its specific requirements and needs to be compliant with rigorous standards. With their knowledge of the market and years of experience in the field, our dedicated TopLab® sales team can assist you to find the best solution for your project, wherever it is located.

Along with their teams, global manager Ingo Sternitzke and regional managers Valerie Sutherlin (USA), Philippe Lardy (EMEA) and Emily Cao (China) are always at your disposal.
Lab of the year Awards

King Abdullah University, Saudi Arabia

Wisconsin Institute for Discovery, US

South Australian Health and Medical Care Centre, Australia

Allen Institute, US

The Francis Crick Institute, UK

CJ Blossom Park, South Korea
Testimonials

Thanks to the trust and confidence that architects, manufacturers and installers place in our products, every year, tens of thousands of square metres of Trespa® TopLab® panels are placed in laboratories and cleanrooms in hospitals, research centres and universities.
Maximilian Englisch, global manager Asia/Pacific at Waldner Laboratory Systems: “I have been working with Trespa® TopLab® for over ten years, both at Waldner Laboratory Systems as in previous companies. I appreciate the versatility of the material. Thanks to its properties it can be used in many applications, which supports the flexible laboratories that Waldner builds for its clients. My main contact is Ingo Sternitzke and his team. Ingo is an industry veteran and knows our business like few others.”

Germany-based system manufacturer Waldner Laboratory Systems installs Trespa® TopLab® in laboratories and cleanrooms all over the world. One of them is the CJ Blossom Park in South Korea, R&D Magazine’s *Lab of the Year 2018*. »
Opened in 2017, the CJ Blossom Park is a highly modern, 115,000 m² R&D facility of the South Korean agglomeration CJ Corporation. Waldner Laboratory Systems worked closely together with the architects of CannonDesign to develop an 'Open Lab concept'. Trespa® TopLab®PLUS Silver Grey was used for the universal bench design: surfaces of 5' by 2.5'-non-directional and easy to reconfigure. The same dimensions and Trespa® TopLab®PLUS work surfaces were used for all desks and instrumentation, giving huge flexibility and encouraging fluid, open team spaces. None are fixed to the floor, so all furniture can be moved between columns and reconnected according to needs, forming solo, small or large islands. Englisch: “CJ knew that different units or tasks might grow or shrink, and in the future some units might take over space from others as functions evolve. They sought a uniform look but with the option to use all the different chemicals and materials on the worktops regardless of their current location and purpose, not knowing who might move where in future. Trespa® TopLab®PLUS was ideal for a multifunctional project like this, to provide ultimately flexible work surfaces for the laboratories.”

“...to provide ultimately flexible work surfaces for the laboratories.”

Maximilian Englisch, Waldner Laboratory Systems
This laboratory, completed in 2002, tests soil, concrete and asphalt materials used in maintaining and improving of highway construction for the Kansas Department of Transportation.

Architect Bruce Glass: “The countertops would be subject to substantial abuse with hard and harsh materials, and heavy metal containers being moved over the top surface. In the past, stainless steel tops had been used, but were easily dented and scratched.” He learned about Trespa® TopLab® products and their properties during a visit of the sales team. “The durability, cost and black craquele colour that would hide asphalt residue convinced me to specify the material for this application.”

Lab Chief Sheila Yardley, who has been working in this laboratory since the start, praises the quality and longevity of these TopLab®BASE worktops. “My opinion on the material after 15 years of use? Great! I asked all our technicians and they answered the same. We do have some scratches but the overall durability is really good.”

My opinion on the material after 15 years of use? Great!”

Sheila Yardley, Kansas Department of Transportation
Meik Syring, CEO at Tresolid and Schreinerei Syring in Bad Wildungen, Germany, knows that designing and manufacturing clean room furniture can be a challenging task and that the choice of the right material is crucial. For various important clean room projects in Germany, including the new-built location of B. Braun PNS in Melsungen, he chose Trespa® TopLab® for both worktops and vertical surfaces. “I have been working with Trespa® since ten years, because of the quality of the material and its smooth surface. I like the black core and the thickness tolerance is minimized. Furthermore, the material is easy to drill, router and sand.”
William Chiu, sales and marketing manager at Kou Hing Hong Scientific Supplies: “We have been enjoying a very good business relationship with Trespa. **Trespa has a very good supporting team that provides quick and clear answers.** We started using TopLab® products in 2000. Now we order 80-100 sheets of TopLab®PLUS and TopLab®VERTICAL a year. In all the years that we installed TopLab®PLUS panels in laboratory projects, **we never received any complaint about durability** so I can assume a good satisfaction level also from our clients. One of the most challenging projects where Trespa materials were used was the Hong Kong Baptist University project in 2016. There were very high requirements on the joints and edge finishing and many openings for drop-in cupsinks. From a fabrication and installation point of view, we think Trespa is much easier to handle than epoxy raisin, especially when on-site alternation is required. Between different brands of phenolic raisin, our installer prefers Trespa products because of their physical properties: it is solid, does not bend and edges can be finished easily.”
We have done almost three thousand projects with TopLab®PLUS. One of them is Takeda Pharmaceuticals in San Diego, where we provided specialty Island End Cap counter tops with sink cut outs where we used our proprietary TopLab® marine edges in conjunction with routed sink drainage grooves.

In ten years we have not encountered any instances of delamination. Also, we found it beneficial to step up to diamond tooling in all our fabrication processes to better machine our TopLab® products due to its strength and durability. We look forward to many more years to come providing Trespa® TopLab®PLUS to our customers.”

David Marquez, SSI Surfaces
In my opinion, it is a very durable, nicely presented and resistant product that suits the laboratory environment.”

David Hipperson, Quality Engineering Manager at Douglas Pharmaceuticals: “Our laboratories were installed in 1996 (phase 1) and 1998 (phase 2) and provided with worktops in Trespa® TopLab®. As chemistry and microbiological testing of pharmaceutical actives, excipients and medicinal products take place here, the most important requirements for its worktops were longevity, easy cleaning and resistance to acids, bases, heat and water. Main challenges were spills and storage of corrosives. TopLab® surfaces look good, they are fairly hardy and not susceptible to physical or chemical damage. We also have had items custom made. In my opinion, it is a very durable, nicely presented and resistant product that suits the laboratory environment.”
Trespa products can be found all over the globe, for example in laboratories of the following companies, universities, research centres and hospitals.

USA
- Princeton University
- Wisconsin Institute for Discovery
- MD Anderson Cancer Centre, Hospital Laboratories
- Allen Institute for Brain Science
- Midwest University, Animal facility
- Johnson&Johnson, Biosense Webster
- Buck Institute for Age Research
- The Chesterfield, Duke University
- R&D Lab Rancho Santa Margarita
- Kansas Department Of Transportation
- Harvard University, Allston Laboratories
- Broad Institute of MIT and Harvard

UK
- AstraZeneca Research Centre
- Pfizer Ltd, Laboratories Building 530
- Novartis
- Francis Crick Institute
- Imperial Centre for Translational and Experimental Medicine
- GlaxoSmithKline, Bioscience Research Park
- Roslin Innovation Centre
- Unilever

Germany
- B.Braun, Avitum Group
- B.Braun, PNS Melsungen
- Christian Albrechts University Kiel
- Dr. Oetker
- Roche Diagnostics GmbH Mannheim

Netherlands
- Sanquin Bloodbank
- Radboud University Medical Centre
- Rosalind Franklin Biotechnology Centre
- Dutch Forensic Institute
- Leiden University Medical Centre
- Exxon Mobil

Belgium
- UZ Leuven, Laboratories Gasthuisberg Campus
- Procter & Gamble Belgium

Switzerland
- Novartis

Kuwait
- Kuwait University

Spain
- Granada University, Faculty of Medicine

South Korea
- CJ Blossom Park

China
- East China Normal University School of Life Science
- Peking University, College of Life Science

Singapore
- Novartis

New Zealand
- Douglas Pharmaceuticals

USA
- South Australian Health and Medical Research Institute
- Sciences Teaching Facility B43, University of Wollongong
- Global Centre for Environmental Remediation, University of Newcastle

Saudi Arabia
- King Abdullah University of Science and Technology

India
- Huntsman R&D
- Cairn Energy, Kewaunee Laboratories
- L’Oréal R&D Centre Bangalore

Australia
- South Australian Health and Medical Research Institute
- Sciences Teaching Facility B43, University of Wollongong
- Global Centre for Environmental Remediation, University of Newcastle

UK
- AstraZeneca Research Centre
- Pfizer Ltd, Laboratories Building 530
- Novartis
- Francis Crick Institute
- Imperial Centre for Translational and Experimental Medicine
- GlaxoSmithKline, Bioscience Research Park
- Roslin Innovation Centre
- Unilever

Germany
- B.Braun, Avitum Group
- B.Braun, PNS Melsungen
- Christian Albrechts University Kiel
- Dr. Oetker
- Roche Diagnostics GmbH Mannheim

Netherlands
- Sanquin Bloodbank
- Radboud University Medical Centre
- Rosalind Franklin Biotechnology Centre
- Dutch Forensic Institute
- Leiden University Medical Centre
- Exxon Mobil

Belgium
- UZ Leuven, Laboratories Gasthuisberg Campus
- Procter & Gamble Belgium

Switzerland
- Novartis

Kuwait
- Kuwait University

Spain
- Granada University, Faculty of Medicine

South Korea
- CJ Blossom Park

China
- East China Normal University School of Life Science
- Peking University, College of Life Science

Singapore
- Novartis

New Zealand
- Douglas Pharmaceuticals

USA
- South Australian Health and Medical Research Institute
- Sciences Teaching Facility B43, University of Wollongong
- Global Centre for Environmental Remediation, University of Newcastle

Saudi Arabia
- King Abdullah University of Science and Technology

India
- Huntsman R&D
- Cairn Energy, Kewaunee Laboratories
- L’Oréal R&D Centre Bangalore

Australia
- South Australian Health and Medical Research Institute
- Sciences Teaching Facility B43, University of Wollongong
- Global Centre for Environmental Remediation, University of Newcastle
Disclaimer

Trespa does not warrant that the information in this document is suitable for the purpose for which it is consulted by the other party. This document does not contain any design, structural calculation, estimate or other warranty or representation that customers and third parties may rely on. This document does not guarantee any properties of Trespa products.

Customers and third parties must have a professional adviser inform them about (the suitability of) the Trespa products for all desired applications and about applicable laws and regulations. Trespa does not warrant the above. The most recent version of the current delivery programme and the Material Properties Datasheet can be found at www.trespa.info. Only the information in the most recent and valid Material Properties Datasheet should be used to select and provide advice regarding Trespa products. Trespa reserves the right to change (the specifications for) its products without prior notice.

Intellectual property

All intellectual property rights and other rights regarding the content of this document (including logos, text and photographs) are owned by Trespa and/or its licensors. Any use of the content of this document, including distribution, reproduction, disclosure, storage in an automated data file or the dispatch of such a file without Trespa’s prior written consent is explicitly prohibited. * Trespa, Meteon, Athlon, TopLab, TopLabPLUS, TopLabECO-FIBRE, TopLabVERTICAL, TopLabBASE, Virtuon, Izeon, Pura NFC, Volkern, Trespa Essentials and Mystic Metallics are registered trademarks of Trespa.
SHAPE THE SCIENTIFIC WORLD